Acta Cryst. (1991). C47, 2026-2029

Structure of Gd₄Mo₁₈O₃₂

BY P. GOUGEON AND P. GALL

Université de Rennes I, Laboratoire de Chimie Minérale B, URA CNRS n° 254, Avenue du Général Leclerc, 35042 *Rennes CEDEX, France*

AND R. E. MCCARLEY

Ames Laboratory, US Department of Energy and Department of Chemistry, Iowa State University, Ames, IA 50011, *USA*

(Received 8 April 1991; *accepted 1 May* 1991)

Abstract. $M_r = 2867.90$, monoclinic, $P2/c$, $a =$ 9.847 (4), $b = 5.6635(7)$, $c = 24.116(11)$ Å, $\beta =$ 109.74 (2)°, $V = 1265.9$ (8) \mathbf{A}^3 , $Z = 2$, $D_x =$ $7.524~\text{g cm}^{-3}$, $\lambda(\text{Mo }K\alpha) = 0.71073~\text{Å}$, $\mu =$ 188.71 cm^{-1} , $F(000) = 2536$, $T = 295 \text{ K}$, $R = 0.035$ for 2452 reflections with $I > 2\sigma(I)$. Gd₄Mo₁₈O₃₂ is isostructural with $Ca₅₋₄₅Mo₁₈O₃₂$ and thus contains three kinds of infinite Mo chains: linear chains with alternate short and long Mo-Mo distances, chains of *trans-edge-shared* Mo₄ rhomboidal clusters and finally chains of *trans-edge-shared* Mo₆ octahedral clusters. While the Ca ions are delocalized in tunnels running along the b axis, the Gd ions show an order which induces a doubling of the b parameter and a changing of the space group from *C2/m* to *P2/e.*

Introduction. The structures of the reduced molybdenum oxides are generally characterized by the formation of Mo — Mo bonds giving rise to molybdenum clusters of various sizes. Thus triangular $Mo₃$ clusters are observed in the compounds $M_2M_0^{3}$ $(M = Mg, Mn, Fe, Co, Ni, Zn, Cd)$ (McCarroll, Katz & Ward, 1957), Li $RMo₃O₈$ ($R = Sc$, Y, In, Sm, Gd, Tb, Dy, Ho, Er, Yb) (McCarroll, 1977), $LiZn₂Mo₃O₈$ (Torardi & McCarley, 1985), $ScZnMo₃O₈$ and $Zn₃Mo₃O₈$ (Torardi, Fecketter, McCarroll & Di Salvo, 1985) and $Na₂In₂Mo₅O₁₆$ (Collins, Fine, Potenza, Tsai & Greenblatt, 1989). Rhomboidal Mo₄ clusters occur in $Ba_{1.14}Mo_8O_{16}$ (Torardi & McCarley, 1981) and $K_2Mo_8O_{16}$ (Torardi & Calabrese, 1984). Octahedral $Mo₆$ clusters as well as chain fragments of two, three, four and five *trans-edge-shared* Mo₆ octahedra are present in Ca16.5Mo13.504o (Lindblom & Strandberg, 1989), $M\text{Mo}_5\text{O}_8$ ($M=\text{Ca}$, Sr, Sn, Pb, La \rightarrow Gd) (Hibble, Cheetham, Bogle, Wakerley & Cox, 1988; Gougeon, Potel & Sergent, 1990; Gougeon, Gall & Sergent, 1991), $Tl_{0.8}Sn_{0.6}Mo₇O₁₁$ (Dronskowski & Simon, 1989) and $In_{11}Mo_{40}O_{62}$ (Mattausch, Simon & Peters, 1986) respectively. In addition, $Mo₈$ clusters formed

been recently obtained in the $M\text{Mo}_8\text{O}_{14}$ ($M =$ La, Ce, Pr and Nd) series (Leligny, Ledesert, Labbe, Raveau & McCarroll, 1990; Gougeon & McCarley, 1991). Among these clusters, the $Mo₄$ and $Mo₆$ can condense *via* edge sharing to form infinite chains which are observed in $Na_{0.9}Mo₂O₄$ (McCarley, Lii, Edwards & Brough, 1985) for the former type and in $M_{\nu}Mo_{4}O_{6}$ ($M = Na$, K, Rb, Sr, Ba, Sn, Pb, In) (Torardi & McCarley, 1979; McCarley, 1986), $Sc_{0.75}Zn_{1.25}Mo_{4}O_{7}$ (McCarley, 1982), $Mn_{1.5}Mo_{8}O_{11}$ (Carlson, Brough, Edwards & McCarley, 1989), $M\text{Mo}_8\text{O}_{10}$ (M = Li, Zn) (Lii, McCarley, Kim & Jacobson, 1986) and $M_4Mo_4O_{11}$ ($M = Y$, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu) (Gougeon, Gall & McCarley, 1991) for the latter. Moreover, infinite linear chains of single Mo atoms occur typically in $MoO₂$ (Brant & Skapski, 1967) and $M₅$ $Mo₂O₁₂$ ($M = Y$, Gd) (Torardi *et al.*, 1985). These three types of infinite chains are observed together in the unique compound $Ca_{5.45}Mo₁₈O₃₂$ (McCarley *et al.,* 1985) in which they extend parallel to the b axis of the monoclinic unit cell. The Ca ions are delocalized in channels which parallel the chains. We present here the crystal structure of an isostructural compound, $Gd_4Mo_{18}O_{32}$, in which the Gd ions are ordered. This cationic ordering induces a doubling of the b parameter and a changing of the space group from *C2/m* to *P2/c.*

by capping two faces of an $Mo₆$ octahedron have

Experimental. Single crystals were obtained by heating a stoichiometric mixture of Gd_2O_3 , MoO₃ and Mo in a sealed molybdenum crucible at \sim 2170 K for 10 min, cooling it at 600 K h^{-1} to 1773 K, then at 100 K h^{-1} to 1273 K and finally furnace cooling to room temperature.

Crystal with dimensions $0.02 \times 0.02 \times 0.36$ mm was selected for data collection on an Enraf-Nonius CAD-4 diffractometer equipped with graphitemonochromatized Mo *Ka* radiation. Accurate cell

0108-2701/91/102026-04503.00 © 1991 International Union of Crystallography

parameters were obtained by a least-squares refinement of the setting angles of 25 reflections with $13 \le 2\theta \le 60^{\circ}$. The systematic absence (h0l, $l = 2n +$ 1) allows the space group to be *P2/c* or *Pc;* the former was assumed and confirmed by the successful analysis. 4194 reflections were recorded in the range $2 \le 2\theta \le 60^\circ$ with h 0 \rightarrow 13, k 0 \rightarrow 7, l -33 \rightarrow 33; ω -2 θ mode was used with scan width $\Delta\omega = (1.20 +$ $0.35\tan\theta$ ^o and counter aperture $\Delta l = (2 +$ $0.5\tan\theta$) mm. Three orientation and three intensity control reflections were checked every 250 reflections and every hour, respectively, and showed no significant variation. Data were corrected for Lorentzpolarization and an empirical absorption correction following the *DIFABS* (Walker & Stuart, 1983) procedure was applied to isotropically refined data. Min. and max. correction factors were 0.841 and 1.271. After averaging ($R_{\text{int}} = 0.031$), 3236 unique data were used to solve the structure with the aid of *MULTAN11/82* (Main, Fiske, Hull, Lessinger, Germain, Declercq & Woolfson, 1982) and subsequent difference Fourier synthesis. The function minimized in a least-squares program was $\sum w(|F_o| - |F_c|)^2$ with $w = 1/[\sigma^2(F_o) + (0.015F_o)^2 + 0.25]$ (Killean & Lawrence, 1969). The refinement of all Mo and Gd atoms anisotropically and O atoms isotropically along with the extinction coefficient (166 variables) converged to $R = 0.035$, $wR = 0.042$, $S = 0.888$ for 2452 reflections with $F_o^2 > 2\sigma(F_o^2)$. The largest shift/ e.s.d. was ≤ 0.01 , max. and min. electron densities in final difference Fourier map were $+3.54$ and -2.42 e Å⁻³ respectively; the final value of g was 4.08×10^{-8} (Stout & Jensen, 1968). A refinement of the occupancy factors for the Gd sites confirmed that they are fully occupied. Scattering factors for neutral atoms and f', f" were taken from *International Tables for X-ray Crystallography* (1974, Vol. IV). All calculations were performed with *SDP* (Frenz, 1985) programs on a Digital MicroVAX 3100. Final atomic coordinates and B_{eq} are reported in Table 1 and selected interatomic distances in Table 2.*

Discussion. The crystal structure of $Gd_4Mo_{18}O_{32}$ contains three types of infinite molybdenum oxide chains, all of which run parallel to the b axis. The first one is composed of distorted edge-shared $MoO₆$ octahedra with alternating short and long Mo--Mo distances as in the distorted-rutile structure of $MoO₂$ (Fig. la). The second type consists of *trans* edgeshared M04 rhomboidal clusters identical with those found in $NaMo₂O₄$ and can also be described as a

Table 1. *Positional parameters and equivalent isotropic thermal parameters*

* Refined isotropically.

double string of edge-shared $MoO₆$ octahedra, each sharing four edges with four adjacent octahedra (Fig. lb). Moreover, two other edges are shared with neighbouring chains to form layers parallel to the *ab* plane. The third type of infinite chain consists of *trans-edge-shared* Mo₆ octahedra with O atoms above all free edges and corners and is similar to that observed in NaMo_4O_6 (Fig. 1c). The interconnection of these cluster chains shown in Fig. 2 is basically the same as described for the $Ca_{5.45}Mo₁₈O₃₂ compound.$ Thus, in the a direction the octahedral cluster chains are connected with the single Mo atom chains through O atoms to form layers in the *ab* plane. These layers are next linked with the neighbouring layers formed by the rhomboidal chains mainly through O — Gd — O bonding. The most obvious structural changes induced by the ordering of the cations between the two analogous compounds were the distortions which occur in the $Mo₄$ and $Mo₆$ chains owing to the doubling of their repeat unit. Thus, within the $Mo₄$ chains, the $Mo(5)$ — $Mo(7)$ and $Mo(6)$ --Mo(8) bonds parallel to the b axis are alternately short $[2.665(2)$ and $2.668(2)$ Å] and long $[3.006 (2)$ and $2.999 (2)$ Å] while they are identical and equal to $2.8475(7)$ Å in the Ca compound. In the same way, the unique transversal bond of 2.546 (2) Å in $Ca_{5.45}Mo₁₈O₃₂$ gives rise to four different Mo- Mo bonds of 2.513 (2), 2.553 (2), 2.562 (2) and 2.588 (2) Å (mean value 2.554 Å). The $Mo₆$

^{*} Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 54222 (19 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

Table 2. *Selected bond distances* **(A)**

$Mo(1)$ — $Mo(2)$	2.605(2)	$Mo(1) - O(2)$	2.030(10)
	2.703(2)		2.084(10)
Mo(1)—Mo(4) Mo(1)—Mo(4) Mo(1)—Mo(3)		$Mo(1) - O(4)$ $Mo(1) - O(3)$ $Mo(1) - O(1)$	2.085(10)
	2.767(2)		
	2.783(2)		2.090(10)
Mo(1)—Mo(3)	2.827(2)	$Mo(1) - O(5)$	2.193(10)
$Mo(1)$ — $Mo(2)$	3.062(2)	$Mo(2) - O(1)$	2.029(10)
		$Mo(2) - O(4)$	2.095(11)
$Mo(2)$ — $Mo(4)$	$2-711(2)$	$Mo(2) - O(2)$	2.102(10)
$Mo(2) - Mo(4)$	2.744(2)		2.104(11)
$Mo(2) - Mo(3)$	2.770(2)	Mo(2)--O(3) Mo(2)--O(6) Mo(3)--O(4)	2.138(9)
$Mo(2) - Mo(3)$	2.813(2)		2.036(10)
		$Mo(3) - O(3)$	2.053(10)
$Mo(3) - Mo(3)$	2.634(2)	$Mo(3) - O(7)$	2.101(10)
$Mo(3)$ — $Mo(4)$	2.829(2)	$Mo(3) - O(8)$	2.119(10)
$Mo(3) - Mo(4)$	2.838(2)	$Mo(4) - O(1)$	2.048(9)
			2.066(9)
$Mo(4)$ - $Mo(4)$	2.836(2)	$Mo(4) - O(2)$ $Mo(4) - O(8)$	2.111(10)
		$Mo(4) - O(7)$	2.116(10)
Mo(5)—Mo(6)	2.513(2)	$Mo(5) - O(11)$	2.048(9)
$Mo(5) - Mo(8)$	2.553(2)	$Mo(5) - O(6)$	2.064(10)
$Mo(5) - Mo(7)$	2.665(2)	$Mo(5) - O(10)$	2.071(10)
$Mo(5) - Mo(7)$	3.006(2)	$Mo(5) - O(9)$	2.086(10)
$Mo(5) - Mo(7)$	$3.168(2)$ [*]	$Mo(5)$ —O(9)	2.090(9)
$Mo(5) - Mo(5)$	$3.177(2)$ [*]	$Mo(5) - O(5)$	2.119(10)
		$Mo(6) - O(13)$	2.064(10)
$Mo(6) - Mo(7)$	2.562(2)	$Mo(6)$ - $O(11)$	2.068(10)
$Mo(6) - Mo(8)$	2.668(2)	$Mo(6) - O(14)$	2.090 (9)
Mo(6)—Mo(8)	2.999(2)	$Mo(6)$ - O(12)	2.093(11)
$Mo(6)-Mo(8)$	$3.134(2)$ *	$Mo(6) - O(14)$	2.097(10)
M0(6)—M0(6)	$3.174(2)$ *	$Mo(6) - O(6)$	2.097 (9)
		$Mo(7) - O(12)$	2.050(10)
$Mo(7)$ — $Mo(8)$	2.588(2)	$Mo(7) - O(6)$	2.068(10)
	$3.175(2)$ *	$Mo(7) - O(5)$	2.077(10)
$Mo(7)$ — $Mo(7)$			
		Mo(7)--O(10) Mo(7)--O(9) Mo(7)--O(10) Mo(8) - O(11)	2.084(10)
$Mo(8) - Mo(8)$	$3.152(2)^*$		2.105(10)
			2.109(9)
$Mo(9) - Mo(10)$	2.572(3)	$Mo(8) - O(11)$	2-049 (10)
$Mo(9)$ — $Mo(10)$	3.091(3)	$Mo(8) = O(12)$ $Mo(8) = O(13)$	2.052(11)
			2.074(10)
$Gd(1) - O(1)$	2.316(10)	$Mo(8) - O(14)$	2.095(10)
	2.377(9)		2.108(10)
$Gd(1) - O(11)$ $Gd(1) - O(3)$		$Mo(8)$ —O(5) $Mo(8) - O(13)$	
	2.386(10)		2.110(9)
$Gd(1) - O(13)$	2.394(10)	$Mo(9) - O(8)$	2.002(9) (× 2)
$Gd(1) - O(14)$	2.407(10)		$2.056(10)(\times 2)$
Gd(1)--O(15) Gd(1)--O(16)	2.427(10)	$Mo(9) - O(15)$ $Mo(9) - O(16)$ $Mo(10) - O(7)$	$2.108(11)(\times 2)$
	2.508(10)		$2.014(9)$ (× 2)
$Gd(1)$ —O(8)	2.559(9)	$Mo(10) - O(15)$	$2.041(11)(\times 2)$
		$Mo(10) - O(16)$	$2.107(11)(\times 2)$
	2.317(9)		
$Gd(2)$ —O(2)			
$Gd(2)$ —O(12)	2.392(10)		
$Gd(2) - O(4)$	2.407(10)		
$Gd(2) - O(10)$	2.412(10)		
$Gd(2) - O(15)$	2.415(10)		
$Gd(2) - O(9)$	2.475(10)		
$Gd(2) - O(16)$	2.548(10)		
$Gd(2)$ —O(7)	2.581(10)		
* Interchain distance.			

comparable to that observed in $Ca₅₋₄₅Mo₁₈O₃₂$ **(2.785 A) and a little shorter than those in com**pounds only containing infinite $Mo₆$ chains *(ca* **2-80 A). The single Mo atom chains are quite similar in the two related compounds, but while they are formed of two independent Mo atoms in** $Gd₄Mo₁₈O₃₂$, they result from the positional disorder **of one Mo atom in Ca5.45Mo18032. The spacing** between Mo atoms along the chain is alternately **2.572 (3) and 3.091 (3) A [2.560 (9) and 3-135 (9) A** in $Ca_{5.45}Mo₁₈O₃₂$. The shortest Mo- Mo interchain distance is $3.134(2)$ Å and occurs between the Mo₄

chains. The remaining interchain distances are

Fig. 1. **The sections of the molybdenum-oxide cluster chains.**

Fig. 2. The structure of $Gd_4Mo_{18}O_{32}$ as viewed down the *b* axis **parallel to the direction of chain growth.** Mo--Mo bonds **in the cluster chains are shown by thick lines,** Mo--O bonds by thin **lines. The unconnected open ellipsoids represent the Gd cations.**

chains distort in the same manner as in $\text{ZnMo}_{8}\text{O}_{10}$ (Lii *et al., 1986)* or Gd₄Mo₄O₁₁ (Gougeon *et al.,* **1991) and thus, they exhibit a marked pairing between the apical Mo(1) and Mo(2) atoms which results in alternately short and long distances of 2-605 (2) and 3-062 (2) A between these atoms as well as between those in the shared edges of the octahedra** $[Mo(3) - Mo(3)$ 2.634 (2) and $Mo(4) - Mo(4)$ **2.836 (2) A]. Consequently, the repeat unit comprises** $two Mo₆ clusters instead of one in the Ca-containing$ **compound. The average of the Mo--Mo distances** within the Mo_8O_{16} repeat unit is 2.784 Å which is greater than 3.80 Å and, consequently, are essentially non-bonding. The range of the Mo- \overline{O} distances is
2.002 (9)-2.108 (11) (av. 2.055 Å). 2.048 (9)- 2.002 (9)- 2.108 (11) (av. 2.119(10) (av. 2.082 Å) and $2.030\,(10)$ -2.193(10) (av. 2.089 Å) in the linear, rhomboidal and octahedral Mo chains, respectively.

The two crystallographically inequivalent Gd cations are located in tunnels formed along the b direction. Their environments are similar and consist of eight O atoms placed at the vertices of a distorted bicapped trigonal prism. The average Gd-O distances are 2.421 and $2.443~\text{\AA}$ for the Gd(1) and Gd(2) sites respectively. The shortest distance between Gd atoms is 4.294 (1) Å [Gd(1)-Gd(2)].

By using the bond-length-bond-strength formula (Brown & Wu, 1976) for the Mo- O bonds $s =$ $(d_{\text{Mo}-O}/1.882)^{-6.0}$, the valence of each independent Mo atom was determined as follows: $Mo(1) + 2.63$, $Mo(2) +2.64, Mo(3) +2.21, Mo(4) +2.16, Mo(5)$ $+ 3.28$, Mo(6) $+ 3.23$, Mo(7) $+ 3.26$, Mo(8) $+ 3.27$, $Mo(9) + 3.55$ and $Mo(10) + 3.55$. From these values, we can deduce an average Mo oxidation state in the infinite Mo_{2} , Mo_{4} and Mo_{6} chains of +3.55, +3.26 and $+2.41$ respectively ($+3.76$, $+3.38$ and $+2.34$ in $Ca_{5.45}Mo₁₈O₃₂$. The calculated valence of the molybdenum in $Gd_4Mo_{18}O_{32}$ is +2.91 which is in good agreement with that based on the stoichiometry, $+2.89$.

Isostructural compounds are also formed with Nd, Sm, Gd, Tb, Dy, Er, Tm, Yb, Lu and Y as the ternary element (Gougeon & McCarley, 1985).

References

BRANT, B. G. & SKAPSKI, A. C. (1967). *Acta Chem. Scand.* 21, 661-664.

BROWN, I. D. & WU, K. K. (1976). *Acta Cryst.* B32, 1957-1959.

- CARLSON, C. D., BROUGH, L. F., EDWARDS, P. A. & McCARLEY, R. E. (1989). *J. Less. Common Met.* 156, 325-339.
- COLLINS, B. T., FINE, S. M., POTENZA, J. A., TSAI, P. P. & GREENBLATT, M. (1989). *Inorg. Chem.* 28, 2444-2447.
- DRONSKOWSKI, R. & SIMON, A. (1989). *Angew. Chem. Int. Ed. Engl.* 6, 758-760.
- FRENZ, B. A. (1985). *Enraf-Nonius SDP-Plus Structure Determination Package.* Version 3.0. Enraf-Nonius, Delft, The Netherlands.
- GOUGEON, P., GALL, P. & MCCARLEY, R. E. (1991). *Acta Cryst.* In the press.
- GOUGEON, P., GALL, P. & SERGENT, M. (1991). *Acta Cryst.* C47, 421-423.
- GOUGEON, P. & MCCARLEY, R. E. (1985). Unpublished.
- GOUGEON, P. & MCCARLEY, R. E. (1991). Acta Cryst. C47, 241-244.
- GOUGEON, P., POTEL, M. SERGENT, M. (1990). *Acta Cryst. C46,* **1188-1190.**
- HIBBLE, **S. J., CHEETHAM, A. K., BOGLE, A. R. L., WAKERLEY, H.** R. & Cox, D. E. (1988). J. *Am. Chem. Soc.* 110, 3295-3296.
- KILLEAN, R. C. G. & LAWRENCE, J. L. (1969). *Acta Cryst.* B25, 1750-1752.
- LELIGNY, H., LEDESERT, M., LABBE, PH., RAVEAU, B. & MCCARROLL, W. H. (1990). *J. Solid State Chem.* 87, 35-43.
- LII, K. H., MCCARLEY, R. E., KIM, S. & JACOBSON, R. A. (1986). *J. Solid State Chem.* 64, 347-358.
- LINDBLOM, B. & STRANDBERG, R. (1989). *Acta Chem. Scand.* 43, 825-828.
- MCCARLEY, R. E. (1982). *Philos. Trans. R. Soc. London. Ser. A,* 308, 141-157.
- MCCARLEY, R. E. (1986). *Polyhedron,* 5, 51-61.
- MCCARLEY, R. E., LII, K. H., EDWARDS, P. A. & BROUGH, L. F. (1985). *J. Solid State Chem.* 57, 17-24.
- MCCARROLL, W. H. (1977). *Inorg. Chem.* 16, 3351-3353.
- McCARROLL, W. H., KATZ, L. & WARD, R. (1957). *J. Am. Chem.* Soc. 79, 5410-5414.
- MAIN, P., FISKE, S. J., HULL, S. E., LESSINGER, L., GERMAIN, G., DECLERCQ, J.-P. & WOOLFSON, M. M. (1982). *MULTAN11/82. ,4 System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data.* Univs. of York, England, and Louvain, Belgium.
- MATTAUSCH, H., SIMON, A. & PETERS, E. M. (1986). J. *Am. Chem. Soc.* 25, 3428-3433.
- STOUT, G. & JENSEN, L. H. (1968). *X-ray Structure Determination.* London: MacMillan.
- TORARDI, C. C. & CALABRESE, J. C. (1984). *Inorg. Chem.* 23, 3281-3284.
- TORARDI, C. C., FECKETTER, C., McCARROLL, W. H. & DI SALVO, F. J. (1985). *J. Solid State Chem.* 60, 332-342.
- TORAgDI, C. C. & MCCARLEY, R. E. (1979). J. *Am. Chem. Soc.* 101, 3963-3964.
- TORARDI, C. C. & McCARLEV, R. E. (1981). *J. Solid State Chem.* 37, 393-397.
- TORARDI, C. C. & McCARLEV, R. E. (1985). *lnorg. Chem. 24,* 476-481.
- WALKER, N. & STUART, D. (1983). *Acta Cryst.* A39, 158-166.

Acta Cryst. (1991). C47, 2029-2032

Mesitylbisl2-pyridinethiolato(1 -)]antimony(IIl)

BY **K.-H. HENGSTMANN, F.** HUBER AND **H.** PREUT

Universitd't Dortmund, Fachbereich Chemie, Postfach 500 500, D-4600 *Dortmund* 50, *Germany*

(Received 16 *February* 1991; *accepted* 22 *April* 1991)

Abstract. [Sb($C_{19}H_{19}N_2S_2$], $M_r = 461.24$, triclinic, $P\overline{1}$, $a = 8.168$ (21), $b = 10.015$ (8), $c = 12.964$ (12) Å, $\alpha=76.74$ (8), $\beta=85.73$ (12), $\gamma=69.22$ (7)°, $V=$

965 (3) Å³, $Z = 2$, $D_x = 1.587$ Mg m⁻³, λ (Ag $K\alpha$) = 0.56087 Å, $\mu = 0.86$ mm⁻¹, $\bar{F}(000) = 460$, $T=$ 291 (1) K, final $R = 0.040$ for 4227 unique observed